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1 Introduction

History: proved by Ogg (1967) for elliptic curves; Shafarevich seems to have been aware of it
too. Proved by Serre and Tate (1968) for abelian varieties, using Néron models; they named it.

Let K be a field with a discrete valuation v, ring of integers OK , maximal ideal m, and residue
field OK/m = k. (Assume for convenience that k is perfect with characteristic not 2 or 3.) We
mostly care about the case where K is a local field, and I will often use notation suggesting
this, but the result holds in somewhat more generality.

Since Néron-Ogg-Shafarevich will give us a connection between the reduction of an abelian
variety A/K and the ramification of its associated Galois representations (namely: good reduc-
tion ↔ unramified Galois representations), we will begin by defining these notions.

Choose a separable closure Ks of K and an extension v of v. This determines a decompo-
sition group Dv|v and an inertia group I(v) = ker(Dv|v → Gk) ≤ Gal(Ks/K) = GK . We
will usually forget about v and write the inertia group as IK because it is determined up to
conjugacy in GK by K and v. We say that a GK-module is unramified if IK acts trivially on
it. (Motivation: a Galois extension L/K, equipped with the obvious GK-action, is unramified
if and only if it is unramified at v in the usual sense.)

Let A be an abelian variety over K. We would like to study the “reduction of A modulo
m”, but this doesn’t (yet) make any sense: k isn’t generally even a subfield of K. There are n
ways to make this precise:

1. We say that A/K has good reduction at v if there exists an abelian scheme (smooth
proper group scheme with geometrically connected fibers) Av over Ov whose generic fiber
Av ×Ov K is isomorphic (over K) to A. In particular, this requires the special fiber
Av ×Ov k to be an abelian variety over k.

∗Notes for a talk given in Berkeley’s student arithmetic geometry seminar. Various references: Pietro Gatti’s
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2. ε more concrete: Néron models. If the abelian scheme Av above exists, it is the Néron
model of A. So if we want to check whether A has good reduction, we could in principle
compute the Néron model and see whether or not it’s proper (and thus an abelian scheme).
The problem is that Néron models are very difficult to compute in general, and not easy
even in the elliptic curve case.

3. Elliptic curve case: easy to check by minimal Weierstrass models. (These are different
from Néron models though.)

4. A somewhat counterintuitive fact: there is actually a “reduction map” from A/K to its

reduction Ã/k. An ugly description: given a K-point of A, write down the projective
coordinates [x0; · · · ;xN ], scale so that they are all integral and not all in m, and literally
reduce mod m. This obviously can’t be made into a morphism of schemes in general (think
mixed characteristic), but we will later see that Néron models give us a nice, natural way
to reinterpret this.

2 Reduction of elliptic curves

Let A = E be an elliptic curve over K. We can write down a Weierstrass model y2 = x3+ax+b
(if charK 6= 2, 3), where a, b ∈ K and the discriminant ∆ = −16(4a3 + 27b2) is nonzero. Notice
that this isn’t unique: if we multiply the equation by u6 and substitute y′ = u3y and x′ = u2x,
then we get a new equation where a is multiplied by u4 and b by u6. (Thus ∆ gets scaled by
u12.) Choosing appropriate values of u, we can ensure that a, b ∈ OK . Moreover, if we choose
them to have the smallest possible nonnegative valuations, then this is a minimal Weierstrass
model.

In the elliptic curve case, minimal Weierstrass models completely determine whether E has
good reduction. Namely, if the discriminant ∆ of the minimal Weierstrass model is nonzero
mod m, then E has good reduction, and its reduction is defined by the same equation. If
a, b 6= 0 but ∆ = 0, then E has multiplicative (nodal) reduction. If a = b = 0, then E has
additive (cuspidal) reduction.

Elliptic curve case: good (reduction is an elliptic curve), multiplicative (reduction is nodal),
additive (reduction has a cusp). This classification comes from writing down a minimal Weier-
strass model y2 = x3 + ax+ b and studying a, b modulo p. (Modify this a little if char k = 2 or
3.) “Semistable” means either good or multiplicative.

3 Néron models

Suppose we have an abelian variety over K, not necessarily with good reduction, and we want
to extend it to a scheme over OK . There are potentially many ways to do this, but (at least in
one sense) the “best” way is the Néron model. The Néron model Av represents the following
functor on the category of smooth separated OK-schemes Y :

Hom(Y,Av) = Hom(Y ×OK
K,A) (1)
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(Draw some pictures here: the left-to-right map is restricting to the generic fiber, and the right-
to-left map is the “Néron mapping property” that we can extend back up uniquely.) This of
course determines Av up to unique isomorphism if it exists, and in fact Néron proved that it does.

Basic facts about the Néron model: it is always smooth, but not necessarily proper. In fact,
it is proper if and only if its special fiber is proper, which happens if and only if A has good
reduction. It is always a group scheme, which we can see from its universal property: the group
law on A becomes one on Av. It is not obvious how to compute the Néron model in practice; in
particular, even in the elliptic curve case; it isn’t necessarily just the minimal Weierstrass model
with the singularities removed. However, in the elliptic curve case, Tate’s algorithm gives an
11-step process to determine what type of singular fiber it has.

4 Néron-Ogg-Shafarevich and a proof sketch

Let m denote an integer prime to char(k), and ` a prime not equal to char(k). Then we can
consider the m-torsion A[m] ∼= (Z/m)2 dim(A), and the `-adic Tate module T`A = lim←nA[`n] ∼=
Z2 dim(A)

` . These are both GK-modules. We claim that the Galois action on these modules
contains the information of whether A has good or bad reduction at m.

Theorem 4.1. The following are equivalent:

(a) A has good reduction at m.

(b) The m-torsion A[m] is unramified for all m ≥ 1 relatively prime to char(k).

(c) The Tate module T`(A) is unramified for some (⇔ all) primes ` 6= char(k).

(d) The m-torsion A[m] is unramified for infinitely many m ≥ 1 relatively prime to char(k).

Proof. The implications (b)⇒ (c)⇒ (d) are clear by choosing m = `n and observing that T`A
is unramified if and only if all A[`n] are unramified. So it will suffice to prove (a) ⇒ (b) and
(d) ⇒ (a). (It is not a priori clear that (c) is independent of the choice of `, but this follows
from the theorem.)

Following the argument of Serre-Tate, we will now prove some lemmas that are useful for
both (a) ⇒ (b) and (d) ⇒ (a). Fix m ≥ 1 relatively prime to char(k).

Consider the special fiber Ã/k of the Néron model. This may be disconnected, but by Cheval-

ley’s structure theorem (since k is perfect), the connected component Ã0 fits into a short exact

sequence 0 → H → Ã0 → B → 0, where H is a linear algebraic group and B is an abelian
variety. Moreover, H is the product of a torus S ∼= (Gm)d and a unipotent group U .

Lemma 4.2. Let c be the index of Ã0 in Ã, i.e. the number of components of Ã. The Z/mZ-

module Ã[m] is an extension of a group whose order divides c by a free Z/mZ-module of rank
dim(S) + 2 dim(B).
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Proof. Take m-torsion of the short exact sequence above to get 0→ H[m]→ Ã0[m]→ B[m]→
0; this is still exact because H(k) is m-divisible. But H[m] = S[m] = (Gm)dimS[m] ∼= µdimS

m ,

and B[m] ∼= (Z/mZ)2 dimB, so the Z/mZ-module Ã0[m] must be free of rank dim(S)+2 dim(B).

But Ã0[m] is normal in Ã[m], of index dividing [Ã : Ã0] = c, so we have our extension.

Now let A[m]I denote the set of m-torsion points of A fixed by the inertia group I = IK =
I(v).

Lemma 4.3. The reduction map defines an isomorphism A[m]I → Ã[m], which commutes with
the action of the decomposition group.

Proof. First we should say what the reduction map is, since we already discussed the fact that
there is not in general any map of schemes A → Ã. There is actually a natural way to turn a
K-point of A into a k-point of Ã. Namely, the Néron mapping property says that A(K) is in

natural bijection with Av(OK), and this in turn maps to Ã(k) by restricting to the special fiber.

Let L be the fixed field of IK , which (in the local field case) is the maximal unramified ex-

tension of K. Then by definition we have Ã[m] = Hom(Z/mZ, Ã(k)) and

A[m]I = Hom(Z/mZ, A(Ks))I (2)

= Hom(Z/mZ, A(L)) (3)

= Hom(Z/mZ, Av(OL)) (4)

Here we are using the fact that Av ×OK
OL is a Néron model of AL. So the reduction map

here sends A(L) = Av(OL) to Ã(l) = Ã(k). One can check that r is surjective and its kernel is
uniquely m-divisible, which is enough to imply that it yields an isomorphism

A[m]I = Hom(Z/mZ, A(L))→ Hom(Z/mZ, Ã(k)) = Ã[m] (5)

We are now ready to prove (a) ⇒ (b). We are given A has good reduction. Then Ã = B is

actually an abelian variety (whose dimension equals that of A), so Ã[m] is a free Z/mZ-module

of rank 2 dim(Ã) = 2 dimA. By Lemma 4.3, A[m]I is isomorphic to it. But by order consider-
ations, this means that A[m]I must be all of A[m], so we are done.

Now let’s prove (d) ⇒ (a). Here, we are given that there exist infinitely many integers m,
coprime to char(k), such that A[m] is unramified. Choose one such m that is greater than c =

[Ã : Ã0]. Then Lemma 4.2 gives us the inequalitymdim(S)+2 dim(B) ≤ |Ã[m]| ≤ cmdim(S)+2 dim(B) <

mdim(S)+2 dim(B)+1. But by Lemma 4.3, |Ã[m]| = |A[m]I | = |A[m]| = m2 dim(A). It follows that
dim(S) + 2 dim(B) = 2 dim(A) = 2(dim(S) + dim(B) + dim(U)). In particular, S and U are

both trivial, so Ã0 = B. Thus the special fiber of the Néron model is proper. One can show
that this implies the entire Néron model is proper, so A has good reduction, as claimed.

We’ve shown that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a), so we are done.

4



5 Corollaries

5.1 Potential good reduction

Corollary 5.1. An abelian variety A/K has potential good reduction (i.e. good reduction after
a finite field extension) if and only if IK acts via a finite quotient.

5.2 Good reduction and isogenies

Corollary 5.2. Let A1 and A2 be isogenous abelian varieties over K. Then A1 has good
reduction if and only if A2 does.

Proof. Suppose there is an isogeny φ : A1 → A2 of degree d. Choose a prime ` that doesn’t
divide d or char(k). Then φ induces an isomorphism of `-adic Tate modules T`A1 → T`A2, as
GK-modules. (The order of the kernel has to divide d but be a power of `.) But good reduction
can be detected on T`A for any ` 6= char(k), so we are done.
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